109 research outputs found

    Fast Glare Detection in Document Images

    Full text link
    Glare is a phenomenon that occurs when the scene has a reflection of a light source or has one in it. This luminescence can hide useful information from the image, making text recognition virtually impossible. In this paper, we propose an approach to detect glare in images taken by users via mobile devices. Our method divides the document into blocks and collects luminance features from the original image and black-white strokes histograms of the binarized image. Finally, glare is detected using a convolutional neural network on the aforementioned histograms and luminance features. The network consists of several feature extraction blocks, one for each type of input, and the detection block, which calculates the resulting glare heatmap based on the output of the extraction part. The proposed solution detects glare with high recall and f-score.Comment: 4 pages, Workshop on Industrial Applications of Document Analysis and Recognition 201

    Computer Vision for Microscopy Applications

    Get PDF

    FaSTExt: Fast and Small Text Extractor

    Full text link
    Text detection in natural images is a challenging but necessary task for many applications. Existing approaches utilize large deep convolutional neural networks making it difficult to use them in real-world tasks. We propose a small yet relatively precise text extraction method. The basic component of it is a convolutional neural network which works in a fully-convolutional manner and produces results at multiple scales. Each scale output predicts whether a pixel is a part of some word, its geometry, and its relation to neighbors at the same scale and between scales. The key factor of reducing the complexity of the model was the utilization of depthwise separable convolution, linear bottlenecks, and inverted residuals. Experiments on public datasets show that the proposed network can effectively detect text while keeping the number of parameters in the range of 1.58 to 10.59 million in different configurations.Comment: 6 pages, 8th International Workshop on Camera-Based Document Analysis & Recognitio

    Progression Analysis and Stage Discovery in Continuous Physiological Processes Using Image Computing

    Get PDF
    We propose an image computing-based method for quantitative analysis of continuous physiological processes that can be sensed by medical imaging and demonstrate its application to the analysis of morphological alterations of the bone structure, which correlate with the progression of osteoarthritis (OA). The purpose of the analysis is to quantitatively estimate OA progression in a fashion that can assist in understanding the pathophysiology of the disease. Ultimately, the texture analysis will be able to provide an alternative OA scoring method, which can potentially reflect the progression of the disease in a more direct fashion compared to the existing clinically utilized classification schemes based on radiology. This method can be useful not just for studying the nature of OA, but also for developing and testing the effect of drugs and treatments. While in this paper we demonstrate the application of the method to osteoarthritis, its generality makes it suitable for the analysis of other progressive clinical conditions that can be diagnosed and prognosed by using medical imaging

    Femtomolar detection of the heart failure biomarker NT-proBNP in artificial saliva using an immersible liquid-gated aptasensor with reduced graphene oxide

    Full text link
    Measuring NT-proBNP biomarker is recommended for preliminary diagnostics of the heart failure. Recent studies suggest a possibility of early screening of biomarkers in saliva for non-invasive identification of cardiac diseases at the point-of-care. However, NT-proBNP concentrations in saliva can be thousand time lower than in blood plasma, going down to pg/mL level. To reach this level, we developed a label-free aptasensor based on a liquid-gated field effect transistor using a film of reduced graphene oxide monolayer (rGO-FET) with immobilized NT-proBNP specific aptamer. We found that, depending on ionic strength of tested solutions, there were different levels of correlation in responses of electrical parameters of the rGO-FET aptasensor, namely, the Dirac point shift and transconductance change. The correlation in response to NT-proBNP was high for 1.6 mM phosphate-buffered saline (PBS) and zero for 16 mM PBS in a wide range of analyte concentrations, varied from 1 fg/mL to 10 ng/mL. The effects of transconductance and Dirac point shift in PBS solutions of different concentrations are discussed. The biosensor exhibited a high sensitivity for both transconductance (2 uS/decade) and Dirac point shift (2.3 mV/decade) in diluted PBS with the linear range from 10 fg/mL to 1 pg/mL. The aptasensor performance has been also demonstrated in undiluted artificial saliva with the achieved limit of detection down to 41 fg/mL (~4.6 fM)

    Wndchrm – an open source utility for biological image analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological imaging is an emerging field, covering a wide range of applications in biological and clinical research. However, while machinery for automated experimenting and data acquisition has been developing rapidly in the past years, automated image analysis often introduces a bottleneck in high content screening.</p> <p>Methods</p> <p><it>Wndchrm </it>is an open source utility for biological image analysis. The software works by first extracting image content descriptors from the raw image, image transforms, and compound image transforms. Then, the most informative features are selected, and the feature vector of each image is used for classification and similarity measurement.</p> <p>Results</p> <p><it>Wndchrm </it>has been tested using several publicly available biological datasets, and provided results which are favorably comparable to the performance of task-specific algorithms developed for these datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.</p> <p>Conclusion</p> <p>We suggest that <it>wndchrm </it>can be effectively used for a wide range of biological image analysis tasks. Using <it>wndchrm </it>can allow scientists to perform automated biological image analysis while avoiding the costly challenge of implementing computer vision and pattern recognition algorithms.</p

    Pattern Recognition Software and Techniques for Biological Image Analysis

    Get PDF
    The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays

    CIL:1188, Caenorhabditis elegans, muscle cell. In Cell Image Library

    No full text
    corecore